Ry R@ Vﬁ’ on b T *j&t@ bs 7w, ?K & ? 5 )
T‘Mmoef;mmw of ST: The Einclem ? o

N?‘;-m’ iim \ji“**f’ gt’ig{f S%?v L iy vi ;swi{)")ﬂé&u;
— )

- Kz%wtviﬂj b i N {,L\ é\y”}&@[

=4S = aM -9 A

Ci{‘ifsfi%;%ﬁ

CL"U’T"&"‘:’% 5&,\ 'f/’i" y %’E’ tm %?” M Eeis S Y i{;

=®
2‘;,‘ Cringa U™ i s
lay, V
alb { o pPp- Q{»{
[t
Pogpmg  ~ £90 “’;"Vﬁ? «: Lg”z"i‘;;{y ?S - ig@ (v B = ﬂg\;?a%& \i;u:i v
E=—-RUME (L o et partrcl )
o 7 '
‘37{ “ f?«fgi\fw,j{‘ %/V\sfg neasured é}‘*” S
9 :;«ég eviten A - 7
T = UL = P
Somsena. - {f? ’zf s L{ — iu")
apM o= Hug

- f‘
"f .
’Y) dy - z % ‘%‘* ‘;{ ’,.,‘5 Fars g
MEASUY ‘Qﬁ{ £ ? "{*‘l T” ALy CplE Fulig

feoy
IS

t&{” ;P‘L{!y}s{’&-? AN

| 5 ~
B S (Tt ) End
B ’\ o 3 'Ej } ii iswf{\ 5§
- (\ lab & 47 ds "= nd3g
go 3 o

JAS = ”ﬂ? ¢ mgg m : ; }\’{;‘Q"’l mom ﬁﬂ’m@ﬂ g Wy €i§ ;*n%g §"§§iia};

[ 4 3 b A ¢ < | i ; &
= S (‘7;\ b ) (-=m %z&. = e—x “‘ch{;b 2.
el v

0 - , : '
(Fv@éﬁ Erar o = + %(;" o )



=" ‘ﬁmﬁc Q@&i&?q} @éﬁ"if‘%‘f{} ey w/{ }Lifv

7 0O hov 260
< C,/ ‘ ; *5%‘{ o U







[y}

,,_“E’C«Mﬂa‘ al sm'wL \HM{‘}(

B ga";{ G &1 “‘fi*’




NJEi gen]

g

L - o
o oy

— T
O =0 —Kodh 0 ~R Y~

ARG 4«3 ,é’;*“?gnvu . Wi{ﬁqﬁ e “:‘j

g - . % i § i =
e AT AMTESL AT = Tt dede



)  §, B gv%wyi{()*;%;w @ >
e

z ':'5“%1 a,éé f?ﬁ’ﬁ&f]ﬁ' Cf&:?) B A % | _

Cotrne ﬂ»éé wril e c{w"smﬂé@ A“if
' ﬁ‘ﬁj ffm?i”ﬁy X }ujb \J)iu,,{ aﬁ;‘#’r@pj]

Vl

F
é:é\,Mfﬁ P oA, Lo Loy

..{:9',*7,

3 i"}§§ ‘ ,;\ ,‘ - : | - ;_0 ' % %«
g“"“’* Wiy speall by osoum e e o

s




VOLUME 75, NUMBER 7

PHYSICAL REVIEW LETTERS

14 August 1995

Thermodynamics of Spacetime: The Einstein Equation of State

Ted Jacobson*

Department of Physics, University of Maryland, College Park, Maryland 20742-4111
(Received 23 May 1995)

The Einstein equation is derived from the proportionality of entropy and the horizon area together

with the fundamental relation §Q = T dS. The key idea is to demand that this relation hold for all the ;\
local Rindler causal horizons through each spacetime point, with & @ and T interpreted as the energy -

fux and Unruh temperature seen by an accelerated observer just inside the horizon. This requires that v AT

gravitational lensing by matter energy distorts the causal structure of spacetime so that the Einstein N /
Viewed in this way, the Einstein equation is an equation of state.

equation holds.

PACS numbers: 04.70.Dy, 04.20.Cv, 04.62.4v

The four laws of black hole mechanics, which are
analogous to those of thermodynamics, were originally
derived from the classical Einstein equation [1]. Wxth
the discovery of the quantum Hawkmg radiation [2], i
became clear that the-analogy is, in fact, an 1denuty
How did classical generai relativity know that the horizon
¢ a form of entropy, and that
mperature? In this Letter 1 will

Y turmng the logic around and

=T d§ connecting heat Q, entropy S, and
c 1 Viewed in thxs way, t the Einstein_ equatlon

elation between thermodynamic variables, and
ity is seen to depend on the existence of local
ium conditions. This perspective suggests that
> 10 miore appropriate to quantize the Einstein
an it would be to quantize the wave equation
air.

- idea can be illustrated by thermodynamics of
mogeneous system. If one knows the entropy
S(E, V) as.a function of energy and volume, one can de-
duce the equation of state from §Q = T dS. The first
law of thermodynamics yields §Q = dE + pdV, while
differentiation yields the identity dS = (3S/9E)dE +
(85/0V)dV. One thus infers that T~! = 35/0E and
that p =T 3S/3V. The latter equation is the equa-
tion of state, and yields useful information if the func-
tion S is known. For éxample, for weakly interact-
ing molecules at low density, a simple counting argu-

ment yields § = In(No. accessible states) « InV + f (E) .

for some function f(E). In this case, 9S/3V o V™I,
one infers that pV o T, which is the equation of state of
an ideal gas.

In thermodynamics, heat is energy that flows between
degrees of freedom that are not macroscopically observ-
able. In spacetime dynamics, we shall define heat as en-
hat OWws across a causal horzzon It can be felt via
the g nal field it’ ‘generates, but its particular form
or nature is unobservable from outside the horizon. For

1260 0031-9007/95/75(7)/1260(4)$06.00

the purposes of this definition it is_not necessary that the
horizon be a black hole event. horizon., It can be simply
th\B‘ounaﬂar:\[: the Npast of any set @, (for “observer”).
This set of horizon is a null hypersurface (not necessarily
smooth) and, assuming cosmic censorship, it is composed
of generators which are null geodesic segments emanat-
ing backwards in time from the set @. We can consider
a kind of local gravitational thermodynamics_ assocxated, )
with such ‘causal horizons, where the “system” is the de- | **
&ees of freedom beypnd the horizon. The outside world |
is separated from the system not by a diathermic wall, but
by a causality barrier.

That causal horizons should be associated with entropy
is suggested by the observation that they hide information
[3] In fact the overwhelmmg majorlty of the informa- * -

2

fluctuations JUSt ms1de and outsxde of. thck horizon [4]
Because of the infinite number of short wavelength field
degrees of freedom near the horizon, the associated “en-
tanglement entropy” is divergent in continuum quantum
field theory. If, on the other hand, there is a fundamen-
tal cutoff length [, then the entanglement entropy is finite ~
and proportional to the honz\ in units of /2, as long
as the radius of curvature of spacetime is much longer
than /.. (Subleading dependence on curvature and other
fields induces subleading terms in the gravitational field -+
equation.) We shall thus assume for most of this Letter

that the entropy is proportional to the horizon area. Note

that the area is an extensive quantity for a horizon, as one
expects for entropy [5].

As we will see, consistency with thermodynamics

requires that /. must be of order the Planck length
(107 cm). Even at the horizon of a stellar mass black
hole, the radius of curvature is 103% 0°° times this cutoff scale.
Only near the big bang or a black hole smgulanly or in
the final stages of evaporation of a primordial black hole
would such a vast separation of scales fail to exist. Our
analysis relies heavily on this circumstance.

So far we have argued that energy flux across.a.causal -
horizon is a kind of heat flow, and that entropy_of the
system beyond is propomonal to the area of that horlzon '

© 1995 The American Physical Society
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It remains to identify the temperature of the system into
which the heat is flowing. Recall that the origin of
the large entropy is the vacuum fluctuations of quantum
fields. According to the Unruh effect [8], those same
vacuum fluctuations have a  thermal character when seen
from the perspective of a uniformly accelerated obs er,. ‘
- We shall thus take the femperature of the system to be
¢ 4 the Unruh temperature associated with such an observer
{ hovering just inside. the horizon. For consistency, the
same observer should be used to measure the energy flux
that defines the heat flow. Different accelerated observers
will obtain different results. In the limit that the accel-
erated worldline approaches the hori ration,
diverges, 50 the Unruh élfipéfaﬁure and energy flux_di-.
it.

he arguments as Tocal as possible. ™"
Up to this point we have been thinking of the system
as defined by any causal horizon. However, in general,
such a system is not in-“equilibrium” because the horizon
is expanding, coniracting, or shearing. Since we wish to
apply equilibrium thermodynamics, the system is further
specified as follows. The equivalence principle is invoked
 view a small neig] d_of each spacetime point p
1 me. Through p we consider a _
c face element P whose past directed
al congruence to_one side. (which we call the
as_vanishing expansion,and shear_at p. It
vays possible to choose P through p so that the
ision and shear vanish in a first order neighborhood
‘We call the past horizon of such a P the “local

orizon of P,” and we think of it as defining
-the part of spacetime beyond the Rindler
hat is instantaneously stationary (in “local
ks 5 . .

“) at p. Through.any.spaeetime. point there

ental principle at play in our analysis is this:
The equilibrium thermodynamic relation §Q = T dS, as
interpreted. here in terms of energy flux and area of local
Rindler horizons, can be 'satisfied only if gravitational
lensing by matter energy distorﬁs the ,,cau,sal,strucgu're of
spacetime in just such a way that the Einstein equatio
Jholds.” We turn now to a demonstration of this claim.
First, to sharpen the above definitions of temperature
and heat, note that in a small neighborhood of any space-
like 2-surface element P one has an approximately flat
region of spacetime with the usual Poincaré symmetries.
In particular, there is an approximate Killing field ¢
generating boosts orthogonal to P and vanishing at_P.
According to the Unruh effect [8], the Minkowski vac.
uum state of quantum fields—or any state at very short
distances—is a thermal state with respect to_the boost_
Hamiltonian at temperature T = fix /27, where k is the
acceleration of the Killing orbit on which the norm of
X is unity (and we employ units with the speed of light
equal to upity). The heat flow is to be defined by gﬂ’fm

s

P

_surface,

boost-energxﬂ current of the matter, Tap x°, where T,y is
the matter energy-momentum tensor. Since the tempera-
ture and heat flow scale the same way under a constant
rescaling of y“, this scale ambiguity will not prevent us
from inferring the equation of state.

Consider now, any, local Rindler horizon through a
spacetime point p (see Fig. 1). Let x® be an approximate
local boost Killing field generating this horizon, with the

direction of ¢ ghosen to be future pointing to the inside
past of . We assume that all the heat flow across the

horizon is (boost) energy carried by matter. This heat
flux to the past of 2 is given by

50 = fj{ Tapx®dX?. (1

(In keeping with the thermodynamic limit, we assume the
quantum fluctuations in T, are negligible.) The integral
is over a pencil of generators of the inside past horizon
H of P. If k° is the tangent vector to the horizon
generators for an affine parameter A that vanishes at P
and is negative to the past of P, then XT = —xAk and
dZ® = k®* dAd A, where d A is the area element on a
cross section of the horizon. Thus the heat flux can also
be written as

&)

Assume now that the entropy is proportional to the
horizon area, so the entropy variation associated with a
piece of the horizon satisfies dS = 784, where §. 4
is the. area variation:of a cross section of a pencil
of generators of F{. The dimensional constant 7 is
undetermined by anything we have said so far (although

given a microscopic theory of spacetime structure one

5Q = —KL{ AT k°kP dAd A .

FIG. 1. Spacetime diagram showing the heat flux §Q across
the local Rindler horizon H of a 2-surface element 2. Each
point in the diagram represents a_two dimensional, spacelike
The hyperbola is a uniformly accelerated worldline,
4 is the approximate boost Killing vector on H.

and

Nt O g g O
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may someday be able to compute 7 in terms of a
fundamental length scale). The area variation is given by

s A =f GdrdA,
FH

where ¢ is the expansion of the horizon generators.

The content of §Q = T dS is essentially to require
that the presence of the energy flux is associated with
a focusing of the horizon generators. At P the local
Rindler horizon has vanishing expansion, so the focusing
to the past of P must bring an expansion to zero at just
the right rate so that the area increase of a portion of the
horizon will be proportional to the energy flux across it.

3

* This requirement imposes a condition on the curvature of

spacetime as follows.

The equation of geodesic deviation applied to the null
geodesic congruence generating the horizon yields the
Raychaudhuri equation

de i

T TR O T RakE, @
where 0% = %o, is the square of the shear and R,
is the Ricci tensor. We have chosen the local Rindler
horizon to be instantaneously stationary at P, so that 6
and o vanish at . Therefore, the 62 and o? terms are
q@ggg@; ibutions that can be neglected compared
he last term when integrating to find @ near P. This
ation yields 6 = —AR,k*k® for sufficiently small
stituting this into the equation for 8 A we find

2

SA = —[ AR, KKP dAd A .
o

can be valid only if 7o k9% =

|_mull k4, which implies that
ab = Rap +7Fgap for some function f. Local
of energy and momentum implies that T,
ice free and, therefore, using the contracted

ntity, that f = —R/2 + A for some constant

Bianchi i

A We thﬂé deduce that the Einstein equation holds:

Rap — %Rgczb + Agab<= zl_r' Ty . ©)
. - ]
The constant of proportionality  between the entropy and
the area determines Newton’s constant as G = (4n n)"],
which identifies the length 7712 as twice the Planck
length (5G)!/2. The undetermined cosmological constant
A remains as enigmatic as ever.

Changing the assumed entropy functional would change

the implied gravitational field equations. For instance, if -

the entropy density is given by a polynomial in the Ricci
scalar ap + ayR + -+, then 80 = T dS will imply
field equations arising from a Lagrangian polynomial in

* the Ricci scalar [9]. It is an interesting question what

“integrability” conditions must an entropy density satisfy
in order for §Q = T dS to hold for all local Rindler
horizons. It seems likely that the requirement is that the
entropy density arises from the variation of a generally

1262

covariant action just as it does for black hole entropy.
Then the implied field equations will be those arising from
that same action.

Our thermodynamic derivation of the Einstein equation
of state presumed the existence of local equilibrium con-
ditions in that the relation §Q = T dS applies only to
variations between nearby states of local thermodynamic
equilibrium. For instance, in free expansion of a gas, en-
tropy increase is not associated with any heat flow, and
this relation is not valid. Moreover, local temperature and
entropy are not even well defined away from equilibrium.
In the case of gravity, we chose our systems to be defined
by local Rindler horizons, which are instantaneously sta-
tionary, in order to have systems in local equilibrium. At
a deeper level, we also assumed the usual form of short
distance vacuum fluctuations in quantum fields when we
motivated the proportionality of entropy and horizon area
and the use of the Unruh acceleration temperature. View-
ing the usual vacuum as a zero temperature thermal state
[11], this also amounts to a sort of local equilibrium as-
sumption. This deeper assumption is probably valid only
in some extremely good approximation. We speculate
that out of equilibrium vacuum fluctuations would entail
an ill-defined spacetime metric.

Given local equilibrium conditions, we have in the Ein-
stein equation a system of local partial differential equa-
tions that jis time reversal invariant and whose solutions
include propagating waves. One might think of these as
analogous to sound in a gas propagating as an adiabatic
compression wave. Such a wave is a traveling distur-
bance of local density, which propagates via a myriad
of incoherent collisions. Since the sound field is only a
statistically defined observable on the fundamental phase
space of the multiparticle system, it should not be canon-
ically quantized as if it were a fundamental field, even

‘though there is no question that the individual molecules .. ¢

are quantuiii mechanical. By analogy, the viewpoint de-

veloped here suggests that it 1 may.not be correct to canoni-
cally quantize the Einstein equations, even if they describe -

a phenomenon that is ultimately quantum mechanical.

For sufficiently high sound frequency or intensity one
knows that the local equilibrium condition breaks down,
entropy increases, and sound no longer propagates in
a time reversal invariant manner. Similarly, one might
expect that sufficiently high frequency or large amplitude
disturbances of the gravitational field would no longer
be described by the Einstein equation, not because some
quantum operator nature of the metric would become
relevant, but because the local equilibrium condition
would fail. It is my hope that, by following this line of
inquiry, we shall eventually reach an understanding of the
nature of “nonequilibrium spacetime.”

I am grateful to S. Corley, J.C. Dell, R.C. Myers,
J.Z. Simon, and L. Smolin for helpful comments on the
presentation in earlier drafts of this letter. This work was
supported in part by NSF Grant PHY94-13253.
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